
Final Report 
"Interdisciplinary Investigations in Support 

of Project DI-MOD 
Research Grant: NAG 2-670 

Prepared for 
NASA Ames Research Center 

Mail Stop 242-4 
Moffett Field, CA 94035 

Principal Investigator: Dr. Scott A. Starks 

Department of Electrical and Computer Engineering 
University of Texas at El Paso 

El Paso, Texas 79968-0523 

April 11, 1996 



1. Background 
A research grant was awarded to The University of Texas at El Paso (UTEP) by 

the NASA Ames Research Center for the purpose of enlisting the services of the 
University in- the investigation of approaches to assist in the development of a 
ground station architecture to support remote sensing and geographical information 
system applications. Various concepts from time series analysis were to be used as 
the basis for the development of algorithms to assist in the analysis and 
interpretation of remote sensed imagery. Additionally, research was conducted 
toward the development of a software architecture to support processing tasks 
associated with databases housing a variety of data . This report presents an 
algorithmic approach which was developed which provides for the automation of the 
state monitoring process. The power specta of time series of sensor data provide the 
data which we process to perform monitoring. 

2. Trend Monitoring via Fractal Analysis of Power Spectra 
As systems become more complex, state monitoring and trend detection have 

become increasingly difficult tasks. With the advent of new technologies, processes 
requiring a considerable level of human interaction are being replaced with others 
employing higher levels of automation. Various types of systems encountered in 
nature, such as an eco-system, presents challenges to those interested in studying 
the level of change (e.g., environmental degradation) being encountered. Both state 
monitoring and trend detection are critical in the developmen of effective methods 
for determining the state of health of complex systems. Trend detection is considered 
to be a more difficult task than state monitoring due to the fact that one must incorate 
some sort of model against which to base the future behavior of the system given 
previous observations. 

In this section, we present an approach to trend detection that is based upon 
the fractal analysis of power spectrum estimates. Given that timeliness is an 
important consideration in the evaluation of any trend detection scheme, we were led 
to such an approach. Primarily because of its ability to condense large volumes of 
data into a few number of parameters, fractal analysis appears to be a reasonable 
approach Before we illustrate our approach, we will introduce the mathematical basis 
of our approach. Next, we present an algorithm which enables the estimation of 
parameters of the fractal model in a very time efficient manner. Lastly, we  discuss 
the application of this approach to trend detection within the context of system 
m o n i t o r i n g  

As with any mathematical representation in nature, fractal models can be 
treated as abstractions. An excellent review of fractals can be found in [S86]. 
Fractals can be categorized as being either "exact" or "statistical." Just as circles and 
squares are geometrically regular, exact fractals exhibit regular properties. Because 
exact fractals rarely appear in nature, we  shall concentrate on statistical fractals in 
this study and illustrate how they can be used to model physical processes. 

Statistical fractal models can be constructed to depict patterns occurring in 
imagery such as those relating to land use, water resources, vegetation, mountainous 
terrain and human population. Parameters drawn from fractal geometry can be used 
as features which can be useful in image analysis, segmentation, characterization 
and interpretation. In particular, the level of complexity present in patterns can be 
compactly described using what is known as fractal dimensionality. Dimensions are 
essential in both Euclidean and fractal geometry for representing characteristics 
such as area, density and perimeter length. 

Fractals have dimensions, just as points, lines, planes and solids have 
topological dimensions. Any of these aforementioned geometrical objects may be 
thought of as sets of points located in a space of a particular dimension. As an 



example, a single point is a geometric object with a dimensionality d=o. A line is a 
collection of points arranged such that its resulting dimensionality is 1. In turn, two 
lines may be used to define a two-dimensional plane, etc. 

Similarly, fractals may be treated as subsets of higher dimensional spaces. 
Unlike Euclidean geometry, fractal dimensionality can be and most often is a non- 
integer quantity. Fractal dimensionality involves the relationship between a 
quantity Q, and a length scale L, over which we measure Q. 

Let us consider an example taken from [092]. Suppose we wish to locate fast 
food restaurants on the main street that connects the campus of the university to 
downtown. We want to locate these restaurants in such a way the distance from 
every point on the street (which may be represented by a straight line of length L) 
to one of the restaurants is e or smaller. If we place restaurants in such a way that 
their number N(e) is minimized while maintaining the constraint that no point on 
the street be no further from the nearest restaurant than e then, we are led to the 
expres s ion  

N(e) a L / (2e) ( 1 )  

Now, let us consider the case where we wish to cover a regular two- 
dimensional geometric region of area A. Once again we wish that no point of the 
region be at a distance more than e from the nearest restaurant. We can construct a 
service zone of area = (2e)2 about each restaurant site. Then the smallest number of 
restaurants needed to cover the region of area A can be approximated by 

N(e) a A / (4e2). ( 2 )  

Finally, let us consider the case where we need to cover a three dimensional 
region, e.g. a mall of volume V. One again, we wish to locate restaurants in a manner 
that each point in the volume is at a distance no greater than e from the nearest 
restaurant. We may construct a zone of volume (2e)3 about each restaurant site. In 
doing so, we may approximate the number of restaurants needed to fill the volume 
while at the same time satisfying our constraint as 

N(e) a V / (8e3). ( 3 )  

It is reasonable to give the following definition of dimensionality. If for some 
set S, the corresponding number N(e) satisfies the following condition 

N(e) a C / ea. (4) 

for some positive numbers C and a then we call a the fractal dimensionality of the set 
S.  This definition of fractal dimensionality may or may not be an integer. In 
representing irregular curves or regions lying on a plane, it is reasonable to expect 
the fractal dimensionality to lie between 1 and 2. It can be gleaned from the example 
that the fractal dimensionality represents the way in which a quantity Q varies with 
scale.It can be shown a corresponds to dimensionality in the regular sense. As a 
consequence, a fractal may be thought of as a subset obtained by extracting some 
portion of the space within which it resides. 

Suppose that we are presented with a real signal, x(t). We may create a time 
series of data by taking samples of x(t) at equally spaced intervals of time. Let us 
denote this time series as before. Suppose further that we have available the power 
spectrum of the signal, Le. the square of the signals Fourier transform. We wish to 
model an approximation to the spectrum by means of a function 



S(W) = A w - ~  ( 5 )  

where we see there are just two parameters of the model. Depending upon the nature 
of the spectrum, the values of the parameters will vary in such as way that the model 
fits the spectrum accordinging to some optimality criteria such as least squares. As 
an example, the power spectrum of a Brownian motion sequence is described by the 
equation ( 5 ) .  Trajectories of processes with the spectrum of the form turn out to be 
fractals. Therefore, we chose to approximate the power spectrum of random time 
series using the form given in ( 5 )  

If we measure the values of the spectrum for at n values of frequency then we 
are left with solve the overdetermined system of equations. 

These equations are nonlinear in the parameters A and a. By applying the 
logarithm to both sides of the equations of (16) and rearranging terms, we obtain the 
set of equations 

In S(w1) = ln(A) -a ln(w1) 
In S(w2) = ln(A) -a ln(w2) 

In S(Wn) = ln(A) -3 ln(wn) 
... 

Allowing the substitutions 

a n d  

yields a set of equations in a more familiar form 

yi = a Xi + b for i = 1, 2, ..., n 

w h e r e  

( 7 )  

a = -3 (1 1)  

a n d  

Due to the convenient form of the equations given in (lo),  any one of a 
number of well-known least squares methods can be used for solution of a and b. The 
transformation equations (11) and (12) can then be applied to a and b to yield the 
fractal dimensionality and amplitude. A computational approach is presented in 
[S93]. 



The earth and its ecology comprise one of the most complex systems known to 
man. Fractal analysis can play in the interpretation of remotely sensed imagery 
which provides information about the state and trend of geographical areas. 
Landscape structure affects many physical processes. For example, the spread of a 
disturbance such as a forest fire and the landscape pattern on which it acts are 
highly related. Likewise, landscape patterns influence the movement of resources, 
humans and wildlife. In making forecasts, landscape ecologists face the task of 
quantifying patterns of great temporal and spatial complexity. Fractals can be 
viewed as a tool for quantifying landscape patterns and can be used in a number of 
situations for modeling landscape processes. It is clear that the current state of 
technology provides us the ability to acquire and store huge amounts of data. 
However, it remains a problem to access and analyze the data to produce information 
content which can, in turn, be used by scientists and policy makers. 

Fractals can be used in analyzing remotely sensed imagery such as the type 
stored in a regional database. Previously, we have presented an approach to the 
characterization of the power spectra of time series using merely two parameters 
from fractal analysis. An approach has been presented for the efficient computation 
of these parameters thus allowing such an analysis to be possible in real time. We 
are currently investigating the application of the algorithm as a means of region 
segmentation in remotely sensed imagery. This application involves analyzing time 
series resulting from the visible and infrared reflectance of vegetation ground 
covers obtained from remote sensing instruments. As we know well, vegetation 
development is highly seasonal with different species developing at different times 
of the year and with different growing seasons. We are able to merge areas on the 
basis of the behavior of their time series. 

Fractal dimensionality is a parameter that can be easily computed for areas of 
interest in a given geographical setting. We plan to utilize fractal dimensionality as 
a basis for image segmentation for remotely sensed images obtained from NASA as 
well as other sources. In particular, we are keenly interested in aggregating regions 
which appear to have the same structure as determined by fractal dimensionality so 
that we can make intelligent comparisons about regions supporting similar land 
cover and land use. 

We plan to apply fractal analysis to the power spectra obtained from time 
series observations of physical quantities such as the greenness index which is used 
to classify land cover. We believe that areas undergoing similar patterns of seasonal 
change will yield similar values for the corresponding fractal dimensionality. In 
addition, features indicative of dramatic global change will also arise from studies 
involving the fractal analysis of time series. 

In [M91] a number of potential applications of fractal analysis to quantitative 
landscape ecology are presented. It is known than fires spread across landscapes 
along a connected network of fuel. Rarely could fuels in a forest or grassland be 
envisioned as uniformly occupying the plane. Instead , a subset of the plane may be 
rich in fuels and may show consistent changes in mass or density with scale. Such a 
distribution of fuel may be characterized using a fractal model 

The velocity of a moving fire front can be modeled as 

where p is the percentage of landscape occupied by fuel, pc is the critical probability 
above which the fuel forms a contiguous cluster across the landscape, and Dmin is 
the fractal dimension of the path between any two points residing in the 
contiguous cluster. Other application areas include those in the areas of modeling 
the ability of species within landscape structure and the modeling of variables such 



as soil moisture as a function of spatial location or time. Fractal models of these sorts 
provide a basis for investigation of the impacts of global change on population 
distributions, land use and agricultural yields. 

3. A Software Architecture for the Analysis of Geographic and Remotely 
Sensed Data 

Many federal agencies acquire, store, and process geographical data (which is 
typically acquired through ground studies) and image processing data (which is 
typically acquired through remote sensing). A significant amount of remotely 
sensed data is acquired through satellite observations. Software systems exist which 
provide for spatial and temporal query access to information about various regions of 
the earth. For example, from a low resolution map of the U.S. a user might outline an 
area such as Texas via a mouse and quickly view a map 'with much greater detail 
about Texas. In fact, the user might select from a number of possible views of Texas, 
including views which show roadways; vegetation; bodies of water and rivers; cities 
and towns; or any combination of these features and others not mentioned. From this 
standpoint the user could select a city in order to gather even more detailed 
information which might include streets, buildings, vegetation, fire hydrants, utility 
information (both above and below ground), population data, weather data, etc. Some 
of this data might come from remote sensing (for example buildings and streets could 
be obtained from visible data and vegetation from near-infrared data) and some data 
might be obtained from ground studies including the population and weather data. 
The user might also be able to obtain this same data along a temporal dimension. The 
remote sensing data is typically stored in a manner such that it is called image data 
or raster data, while the ground study data is called vector data. The vector data is 
typically associated with some spatial key and, from the database standpoint, might 
best be viewed as a tuple of data associated with some location. 

The ability to view information as was just described requires a sophisticated 
software architecture (we will ignore the obvious hardware requirements). Figure 1 
provides an overview of this architecture. The data acquired from remote sensing 
and ground studies must be preprocessed in order to make it suitable for display. 
Scientists develop exploratory programs which process the raw data, extracting those 
subsets of data which are of interest in some problem analysis. Image processing 
software is employed by analysts in order to develop displays of images which 
contain as much information content as possible. Once the data and images are of a 
sufficient quality they migrate into databases to be accessed, usually over networked 
systems, and displayed using a Geographical Information System (GIs). GIS systems 
typically provide access to all vector data and to some subset of image data. Some 
image processing information, however, cannot be combined with related GIS 
information. Clearly, the software architecture to support the analysis of earth data 
involves the use of a wide range of sophisticated software tools and exploratory 
programming languages. 

There are two major problems with the current software architecture. The 
first problem is that it takes a significant effort to do the exploratory programming 
to extract data of interest from the raw data database. Furthermore, once the data has 
been processed and is residing in the processed data database, it takes too long to do 
further processing in a database host language or even in a procedural version of 
SQL. The second problem is that it is difficult to know how the high level tools will 
interact. In other words, there is no known formal specification language available 
to describe the functionality of the various tools which make up the architecture. If 
there were such a language and, for example, both the geographical information 
system and the database management system were specified in this language, the 
combined behavior of the two specified systems could be studied prior to attempts to 



put the systems together. 

4. The Need for Different Programming Languages 
It is estimated that less than 3% of the Satellite Data available has ever been 

seen. Less than 1% has been analyzed. In other words, we have the technical know- 
how to acquire and store the satellite data but we have difficulty determining the 
information content contained therein. Every year that passes adds more data to the 
existing unanalyzed data sets. The central problem has to do with programming. It 
seems that much of the exploratory programming to analyze the raw data sets is done 
in languages like FORTRAN or C. The resulting programming effort costs too much 
money and takes too much time for it to keep up with the growth in new data. 

I i I A HostLanguage I 
Database 
Software 

X 

Figure 1. Software Architecture for Geographical Data Analysis. 

SequenceL (formerly called BagL) is a language designed to experiment with a 
strategy for problem solving wherein one solves a problem by describing data 
structures strictly in terms of their form and content, rather than also having to 
describe algorithms to produce and/or process the data structures. The S e q u e n c e  L 
work has led to the identification of constructs for describing data structures. Our 
view of a data structure is meant to include traditional data structures, databases, 
screen displays, reports, etc. The primitive data structure of SequenceL is the 
s e q u e n c e .  

S e q u e n c e s  in SequenceL are collections of elements wherein each element 
may occur more than one time (as opposed to a mathematical set ) and where each 
occurrence of an element possesses an ordinal position (as opposed to a bag or 
m u l t i s e t  ). A sequence may be singleton (e.g., [99]), or nonsingleton (e.g., 
[ [ 1],[2] ,[3]] or [[[ 11 ,[2] ,[3]] ,[ [ 10],[20],[30]] ). Complex structures of s e q u e n c e s  
containing sequences can be described. Like the list of LISP and the array of APL 
and J, the sequence We call 
the various data structures that can be composed using sequences, nonscalars .  

It is believed that processing geographical data utilizing nonscalar processing 
constructs will improve the productivity in the exploratory and database 
programming efforts depicted in Figure 1, boxes A and B. This is our niche. 
Nonscalar processing constructs do not require the explicit use of iterative, 
recursive, or I/O constructs. Furthermore, early analysis of SequenceL seems to 
indicate that the nonscalar constructs provide a uniform abstraction for data 
definition, query, host language, and integrity constraint processing. Much effort is 
needed, however, to develop a robust, easy-to-use, production-quality language based 
solely upon these constructs. The production quality version of such a language 
must enhance our ability to develop large programs, particularly the types of 

of SequenceL can be used to build any data structure. 



programs which comprise the result of exploratory programming efforts. 

4.1 Nonscalar Primitives 
A computational step, in S e q u e n c e L ,  involves the evaluation of a guarded 

command, which is applied to an input s e q u e n c e ,  and which yields an output 
sequence .  Functions contain the guarded commands of a SequenceL  program. The 
inputs to a computational step are obtained in one of two ways: (a). through an 
eventive construct, wherein a function consumes its input from a universe of 
named sequences and produces, as its output, a set of named sequences (in the 
universe); or (b). through normal functional parameter passing, which is similar to 
the parameter passing in languages like LISP. 

A total computation, in SequenceL, yields a partially ordered set of named 
s e q u e n c e s .  A command, in a SequenceL  guarded command, falls into one of three 
categories: generat ive ,  regu lar ,  or irregular.  These three categories, combined 
with the eventive category, comprise the four constructs for nonscalar processing, 
and are used in place of algorithms. 

There are two major concerns which arise when processing nonscalars: the 
selection of items to participate in the processing and whether processing reduces or 
expands input when producing output. 

In nonscalar processing, a nonscalar (Le., the DOMAIN column in figure 2) 
serves as the basis for a new nonscalar (Le., the RANGE A given 
construct acts in a manner to produce a r a n g e  nonscalar based upon the d o m a i n  
nonscalar. All elements of a domain may participate in the computation needed to 
produce the range. The r e g u l a r  and g e n e r a t i v e  constructs use all elements of a 
domain s e q u e n c e  in order to produce a range s e q u e n c e .  For example, when one 
computes the sum of a set of elements, the addition operator is being applied, in a 
regular fashion, to all  elements of the set (i.e., the addition operator is acting as an 
aggregate operator in this case). Alternatively, some subset of the elements in the 
domain s e q u e n c e  are used to produce the range sequence. The i r r e g u l a r  
construct selects items to participate based upon position or  value, while the 
event ive  selects elements based upon availability and (optionally) upon additional 
conditions such as position or value of the available domain element. 

In producing a range sequence, nonscalar constructs either reduce or expand 
the domain s e q u e n c e .  Reduction and expansion can occur with respect to the 
cardinality or dimensionality of the domain sequence. Expansion means that the 
range s e q u e n c e  is larger, in dimension or cardinality, than the domain s e q u e n c e  
upon which it is based. Reduction means that the range s e q u e n c e  is smaller, in 
dimension or cardinality, than the domain sequence  upon which i t  is based. Both 
the reduction and the expansion may sometimes leave the range sequence  equal, in 
dimension and/or cardinality, to the domain sequence  . 

In both the regular and irregular processing of nonscalars, one begins with a 
nonscalar and (typically) reduces in the dimension of the nonscalar (in the case of 
regular processing) or reduces in cardinality (in the case of irregular processing). 
The generative construct expands results. 

column in figure 2). 



RANGE 

Selection 

4.2 

Ficure 2. A Summary of Nonscalar Constructs. 

Examples of Nonscalar Primitives in S e q u e n c e L .  
The regu lar  form of processing is used when an operation is to be applied in 

a uniform manner to all of the elements of the nonscalar. For example, when one 
computes the sum of a set of elements, the addition operator is being applied to a l l  
elements of the set (i.e., the addition operator is acting as an aggregate operator in 
this case). This construct typically reduces a structure in terms of its dimension. The 
example below reduces from a two dimensional sequence into a one dimensional: 

*([ [ I ] ,  [21,[31, [411) >> 

In other cases, one may wish to apply an operator to s o m e  of the elements of 
the nonscalar. The selection of elements may be based upon v a l u e  or p o s i t i o n .  
SequenceL possesses a construct for this i r r e g u l a r  form of processing data. The 
i r regular  construct requires the ability to select items conditionally based upon a 
nz u p  or subscript. In S e  q u e n c e L this construct requires a guarded command 
structure. The noniterative form of the guarded command provides the basic form of 
the body of a SequenceL function. For example, suppose one wished to select all odd 
values in some sequence of integers, int. To do so, one would need to provide a 
func t ion :  

[(I "(2 "(3 *4NI ') '> [241 

Odd-In t e g  e rs( D oma in ( In  t ) ,  Rang e ( ) ) 

[ I  o t h e r w i s e  ] 

= 
[ [lnt(i)] w h e n  # ( m o d ( l n t ( i ) , 2 ) , 0 )  

This function effectively states that one wishes to return each ith value of Int when 
that i t h  value is odd (i.e., when the i t h  value mod 2 is not equal to zero). 
Odd-Integers has no r a n g e  arguments because it is intended solely for use as a 
helper function. That is, it is to be invoked by some other SequenceL function 
which will supply its argument Znt and accept its result. Suppose one wished to sum 
all odd integers in Int. To do so, one would compose functions: 

Sum-of-Odds.(Domain(lnt), Range(Sum)) = 
[ +(Odd-lntegers(1nt)) ] 

This function is considered to be a nonhelper function. 
A SequenceL program consists solely of a set of SequenceL functions which 

are applied to a SequenceL Universe ,  U. The Universe is where the user may pair 
SequenceL variable names with sequences of values via a text editor. Like GAMMA 
[B93, HLS921 (and similar to the tuple-space of Linda [G85]), when a S e q u e n c e L  
program executes it modifies the Universe  to which it is applied. If each variable 
appearing in a function's Domain is paired with a sequence in U , the function is 
enabled for execution and is termed a n o n h e l p e r  f u n c t i o n .  Obviously, several 



functions may be thus enabled. These functions execute concurrently. When a 
nonhelper function executes, it consumes all variables in its domain. When a 
nonhelper function completes execution, the result(s) of the function is(are) paired 
with the function's range variable(s) and added (or produced) in the Universe.  It is 
via the U n i v e r s e  that a user provides inputs and obtains outputs. There are no 
explicit constructs for I/O in SequenceL .  

The interaction between a SeqzienceL function and its Universe ,  in terms of 
production and consumption, provides for the eventive processing of a 
n o n s c a l a r  s t r u c t u r e .  In eventive processing, one processes a nonscalar 
structure whose elements are not necessarily available all at once. The arrival of an 
element is an event to which a function must respond. 

Assume program 17 is applied to universe U, where n contains the functions 
Odd-Integers and Sum- of-Odds, as introduced above, and U = ( cInt, [[6],[7],[8],[3]]> }. 
Based upon the eventive construct, only Sum- of-Odds is enabled for execution. It 
consumes its arguments from U :  

and immediately invokes Odd-Integers which is applied to each value of I n t .  
O d d - I n t e g e r s  returns only those values which meet the # ( m o d ( I n t ( i ) , 2 ) , 0 )  
condition. Since, empty sequences [ I  are null values they disappear in the result of 
Odd-Integers which is returned to Sum-of-Odds: 

Sum_of_Odds(Dorizain(Int),Range(Sum)) = [ +([[71, [.?I]) 1 

Notice that Odd-Integers, which is an example of irregular processing, reduces in 
cardinality. Since S u m - o f - O d d s  is a nonhelper function, its result is computed, 
paired with the respective range variable and produced in the universe: 

U = ( <Sum, [IO]> } 

The eventive construct also allows for the processing of integrity constraints. 
Rather than enabling nonhelper functions based upon the availability of domain 
variables in the universe, constraint functions are enabled based upon the 
availability of a universe U and its successor U'. Thus, transition constraints can be 
stated exactly one time and imposed automatically whenever there is a change to a 
u n i v e r s e .  

In both the regular and irregular processing of nonscalars, one begins with a 
nonscalar and (typically) reduces in the dimension of the nonscalar (in the case of 
regular processing) or reduces in cardinality (in the case of irregular processing). 
There are times, when it is necessary to e x p a n d  a nonscalar, increasing the 
nonscalar in dimension and/or cardinality. SequenceL possesses a g e n e r a t i v e  
construct which is used to expand nonscalars. Its basic form is to provide an upper 
and lower boundary for the term to be generated and an optional membership 
condition for items to be generated. For example, the term [ [ I ] ,  ...,[SI] evaluates to 
[ [ I ] ,  [21, [31,[41,[511 in SequenceL while [ [ O I ,  (11,. . ., =([.', -t([pred(pred(!)),pred(!)l)l),.  .., [2011 
evaluates to [0],[1],[1],[2],  [3],[5],[8],[13]]. It seems clear, that there are four ways to 
expand:  

From left to right: 
(lower bound) (membership condition) (upper bound) 
From right to left: 
(1 ow er bound) (membership c o ndi t i o n) (upper bound) 
From outside-in: (e.g., convergence problems) 



(lower bound) (members hip condition) (upper bound) 
From inside-out: 
(lower bound) (members hip condition) (upper bound) 

The denotational semantics of SequenceL were completed in 1993. A prototype 
interpreter was completed in 1994. A proof that SequenceL is equivalent to the 
Universal Turing Machine was completed early in 1995.[F95] Many of these results 
are reported in earlier papers [C90-94, CG911 

5. Specifying Integrated Software 
A second problem has to do with the integration of off-the-shelf tools and 

exploratory languages to form an appropriate software architecture such as is 
presented in Figure 1 .  Excellent off-the-shelf software exists to provide the image 
processing,  networking,  database,  and geographical  in format ion  system 
functionalities. The concern that we, and many others, face is our level of ignorance 
about the combined behaviors of resulting integrated systems. We  are forced to (a). 
rely on the experiences of others who have combined some subset of these systems 
already or (b). put together software products and then stand back and observe what 
h a p p e n s .  

Facing this prospect has caused us to pause and wonder about the feasibility of 
identifying or developing a single specification language that could be used to 
describe the functional behavior of existing software products. A language such as 
this would need to have a precise semantic and be reasonably compact and easy to 
use. Based upon the language, it might be possible to develop an automated tool that 
could help one analyze the likely result of combining different software packages. 
Consider the following example. 

Suppose one wished to combine a very simple relational database management 
system with a networking system. Assume that the database management system's 
interface is limited to a simple query language consisting of the relational algebra 
primitives: union, difference, Cartesian product, select, a n d  join. Assume that the 
network package consists of transaction primitives pos t  and receive. Now imagine 
that both sets of transaction primitives have been defined precisely in some 
specification language. As an exercise, one could easily do this in Prolog. One can 
imagine the following combinations: 

NETWORK X DATABASE 

pos t  
p o s t  
p o s t  
r e c e i v e  
r e c e i v e  

d i f f e r e n c e  
u n i o n  
Cartesian product 

se lec t  
j o i n  

Furthermore, one can imagine the combination ,of database transactions. For 
example, one might wish to select some set of tuples resulting from a Cartesian 
product via the network (i.e., an interaction of network x (database x database) ). In 
any case, if a simulator based upon the specification language were available, it  
might be possible to study the functionality that results from combining these two 
products. Furthermore, analysis tools could be developed to study the interactions as 
well. For example, one might wish to study the problems that arise with multiple 
users (e.g., r a c e  and d e a d l o c k  ), or those that occur due to network or database 
failures. The basic idea is that the specifications of the products could be studied at a 
fine level of detail to provide much greater predictability to the actual integration of 
tools. 



The long term goal of a research effort to develop a specification language for 
the integration of tools would likely be to move the state of the practice towards a 
standard language. Suppose, in addition to receiving the normal set of brochures 
concerning a software product, one could f t p  a specification of the product in this 
standard language. We intend to investigate the use of languages such as PSDL 
[BL90], MPL [W92], and RAPIDE [LK95] for specifying the functionality of tools 
identified in Figure 1. 

Obviously the identification or development of such a language is a daunting 
task. The array of high level software tools currently available is quite large. Many 
of these tools have hundreds of commands. For example, in most image processing 
packages there exist many commands that can be used in an orthogonal way - there 
are commands to allow for data retrieval, processing, refining, etc. 

Many areas of software engineering possess expertise to contribute to the 
endeavor introduced above. The areas include software slicing and merging, 
specification languages, reverse engineering, integration, etc. We believe that this 
area of software integration is where many computer scientists and software 
engineers will work in the future. We further believe that this represents a 
fundamental area of research, possessing a significant practical import. 

5.  Conclusions 
It is our belief that the "reverse" prototyping of software packages is a 

promising approach to the the analysis of how packages will behave in the context of 
large software architectures. In addition to the SequenceL language development 
activity, we intend to use its software architecture as a laboratory for the study of 
methods to analyze software architectures. Our initial investigations will involve the 
use of the CAPS prototyping tool. In the initial invetigations we intend to prototype 
the various software packages we purchase. We will then combine the prototypes of 
the packages to see what functionality ensues. Since we are likely to purchase more 
than one GIS and more than one image processing package, we should be capable of 
determining the relative merits of the competing packages with respect to the total 
functionality of our software architecture. 

BIBLIOGRAPHY. 
[B93] J.P. Banatre and D. Le Matayer, "Programming by Multiset Transformation," 

[BL90] V. Berzins and Luqi, "Languages for Specification, Design, and Prototyping", 
CACM, Vol. 36 No. 1, (January, 1993), pp.98-111. 

in P. Ng and R. Yeh (eds.), Modern Software Engineering Foundations and 
Current Perspectives, Van Nostrand Reinhold, pp. 83-1 18 (1990). 

IEEE Transactions on Knowledge and Data Engineering, Vol. 2 No. 3, September, 
[C90] D.E. Cooke, "Towards a Formalism To Produce a Programmer Assistant CASE Tool," 

1990, pp. 320-326. 
[CG91] D.E. Cooke and A. Gates, "On the Development of a Method to Synthesize 

Programs from Requirement Specifications," International Journal on Software 
Engineering and Knowledge Engineering, Vol 1 No 1, (March, 1991) pp. 21-38. 

[C92] Daniel E. Cooke, "An Issue of the Next Generation of Problem Solving 
Environments," Journal of Systems Integration, Vol 1(2), (February, 1992) pp. 39- 
52. 

[C93] Daniel E. Cooke, "Possible Effects of the Next Generation Programming Language 
on the Software Process Model," International Journal on Software Engineering 
and Knowledge Engineering, Vol 3 No 3, (September, 1993) pp. 383-399. 

Force Office of Scientific Research, #F49620-93-1-0152, February, 1994. 
[C94] Daniel E. Cooke, "Towards a Formalism for Program Generation," for the Air 

[F95] B. Friesen, "The Universality of BagL," Masters Thesis, University of Texas at El 



Paso, May, 1995. 
[G85] D.Gelernter, "Generative Communications in Linda", ACM Transactions on 

Programming Languages and Systems, 7(1), pp. 80-1 12 (1985). 
[HLS92] Chris Hankin, Daniel Le Metayer, and David Sands, "A Calculus of Gamma 

Programs," Publication Interne no 674, Juillet, 1992, IRISA, France. 
[LK95] D.C. Luckham, J.J. Kenney, et. al. "Specification and Analysis of System 

Architecture Using Rapide," IEEE Transactions on Software Engineering, Vol. 21 
No. 4, (April, 1995) pp. 336-355. 

EM911 Milne, B.T. 1991. "Lessons from Applying Fractal Models to Landscape Patterns." 
In Quantitative Methods in Landscape Ecology, M.G. Turner and R.H. Gardner, eds. 
Springer-Verlag, New York, 199-235. 

[092] Ohkade, N. 1992. "A Real Time Algorithm for Fractal Analysis and Its Application 
to the Early Detection of Epileptic Seizures." MSEE Thesis. Department of Electrical 
and Computer Engineering, The University of Texas at El Paso. 

[S86] Stanley, H.E. 1986. "Form: An Introduction to Self-Similarity and Fractal 
Behavior." In On Growth and Form: Fractal and Non-Fractal Patterns in Physics, 
eds. H.E. Stanley and N. Ostrowski, eds. Martinus Nijhoff, Boston, 21-53. 

monitoring based upon fractal analysis," in Intelligent Robots and Computer 
Vision XI I :  Algorithms and Techniques, David P. Casasent, Editor, Proc. SPIE 2055, 

[S93] Starks,S.A., J.W. Hamilton and N. Okhade, "An automated approach to trend 

pp, 44-49 (1993). 
[W92] G. Wiederhold, P. Wegner, 

No. 11, (November, 1992) pp. 
S. Ceri "Toward Megaprogramming," CACM, Vol. 35 
89-99. 

A reducing construct, given an input D, will produce a result R where R is no larger (in 
dimension or cardinality) than D. E.G., Given a construct that reduces in cardinality: D -+ 
R, the following relation holds after D 

This operator represents a SequenceL evaluation step. The use of >> >> indicates many SequenceL 
s teps .  

is mapped to R: ID1 L IRI 


